Perfect Beauty of math in the Symmetry

数学和完美对称性质

Symmetry -01

Look at the above figures. Which of them are symmetric? Which of them are not?

For the symmetric figures, what are the lines of symmetry (if applicable)?
In a symmetric figure, we can produce as many isosceles as we like. Do you know the easiest way to find them?

We need to explain on the last figure (the figure at the bottom right). It is consisted of two circular arcs with different radii. The two arcs are glued smoothly (at the gluing point). This last figure is not symmetric.

Not only this figure is NOT symmetric, but also we CANNOT pick out from it a sub-figure that is symmetric, as long as the figure contains both arcs with different radii. But can you argue for this claim?

最后一个图形是非对称的。 不仅全图非对称,而且你找不到对称的子图 (只要子图中包含了半径不同的圆弧段)!
可是你能为以上论断提供根据吗?(换言之,能严格证明吗)

Sometimes a figure might not be perfect under the given condition, but we are tempted to produce a figure that is more perfect than the one given in the question. For example, we might draw an isosceles when the given one is scalene, and draw a special quadrilateral (e.g. a rectangle) when the given one is just a trapezoid, or even arbitrary quadrilateral. This is the Pitfall! that we shall avoid.

数学教育小故事 (之一):卖桔子的故事


卖桔子的故事

孩子学加减乘除四则运算的时候,是不是认为没啥用?看那超市,货款全在收银机上打出来,更会想到机器都给算了,不用我算。下面讲的是一个经济学家卖桔树的故事,读来颇多趣味。

首先他在春节期间把 160 盆桔树拉到郊区的花市卖(注意这是在中国南方,很暖和,所以市场开到很晚)。他发现那里的市场竞争好厉害,价格高过10 元就没人问。 结果他以 10 元每盆卖了 160 盆,收现金 1600 元。到第二年春节,他找到闹市旺地,而卖桔树的比较少, 并且灵活调节价格。如下:

下午六点到八点来的是上班一族,偶尔碰上平时不多见的桔树,立马掏钱,不在乎价格。结果以 60元每盆卖出了 40 盆。到了晚上九十点钟,顾客开始挑了,要货比三家,买又好又便宜的,于是他降价到20 元卖出 40 盆。十一点以后,顾客抓住了摊主想卖掉,因而想趁收摊前捡便宜。于是他再降价到10元,卖出了20盆。总计收现金 60 × 40 + 20 × 10 + 10 × 20 = 4600 元,多获利 3000, 并且收现总量是头年的 3 倍。作这个实验的经济学家叫张五常,是今天中国的一个大腕。

上面这个故事有点意思。引申一步,给我们大人孩子还有这样的启示:营销策划和成本核算要用到很多知识也包括数学计算。我们如果不会算数,哪里来的灵气去制定营销策略呢。看到收银台的发货票很方便,是为了提高效率,减少差错,让顾客满意,也减少卖货人的压力。可是千万不能只依赖计算器呦。