Smart Solutions for Some Equations (Quadratic, Polynomial and Rational)

 

Let’s look at a few problems on solving equations of different forms.

Find the smaller root for the following.

Problem (a).  (2-x) (3-x) = 2 / 3

Problem (b).   x (x-1) (7-2x) = (3-x) (4-x) (4-2x)

Problem (c).   [x (x-1) ⁄ (3-x)] + [x (x-1) ⁄ (4-x)] = 4 – 2x

Relating to equations above, we plot several curves using Geogebra (an app which can produce the graph for given functions – of course, this is only one feature of the many).

What’s interesting is all the three equations as in (a)(b)(c) share a common solution, and it can be found through algebraic manipulation. Take a forward look (click) here – you will see amazing graphs; the solution (roots) shall be some intersection points.

 

Of these questions, the challenging levels are in the order of ascending: from average level like (a), to somewhat challenging like (b), to very challenging in (c). For better understanding, we suggest the reader to try solve questions (a) (b) (c) first; and then compare with the solution provided in this file (pdf),
where we solve algebraically only for (a), but applying a combination of algebraic and graphic solution to tackle problems (b) and (c).  It’s called smart solution — we are applying a variety of tools at hand, not just following a fixed procedure.

 

Combining graphing with algebra facilitate us to guess where the root(s) of the equation are, or (sometimes) make observation of the roots easier. It’s also fun!

Try work out these equations first, then you can check out the solutions (pdf) here.

Now you can take a second look at the graphic solution. Have you seen and understood more, about the question, and about the how algebraic manipulation plays out in function graphs?

Mysterious Unbalanced Sheets on Loans

– story told by hunchbacked shopkeeper

Once there was a hunch-backed shopkeeper. And he told the following story:
(For readers at grade 6/7 level and up)

“Once I lent 100 dinars, 50 to a sheik from Medina and another 50 to a merchant from Cairo.

“The sheik paid the debt in four instalments, in the amount 20, 15, 10 and 5. .. .. Note that the total of his debt balance is 50 dinars.

1st Installment: Paid 20 & Still Owe 30
2nd installment: Paid 15 & Still Owe 15
3rd Installment: Paid 10 & Still Owe 5
4th Installment: Paid 5 & Owe 0
Total Paid 50 & Total Owe 50

“Meanwhile the merchants from Cairo also paid the debt of 50 dinars in four instalments, in the following amount: 20, 18, 3 and 9. And here is the balance sheet for his debt.

1st Installment: Paid 20 & Still Owe 30
2nd installment: Paid 18 & Still Owe 12
3rd Installment: Paid 3 & Still Owe 9
4th Installment: Paid 9 & Owe 0
Total Paid 50 & Total Owe 51

“But note his total owed is 51 dinars”, remarked by the hunchbacked shopkeeper; apparently this should not have occurred.

Using a bit math, can you help our shopkeeper to solve the mystery?

Think on your own first!

Then you might want to take a look at our explanation. Do you agree with us?

一个神解 — 模式和变换 — 正方形幻方问题

神解是什么?在数学里,就是那些好美妙好神奇的解,恰到好处。好似飞来之笔,其实是有规律可循的。我们看一个正方形幻方的问题。

Prob Square Matrix

如上图所示的是一个正方形幻方。请把 1, 3, 5, 7, 9, 11, 13, 15, 17 这九个数填入到其中的圆圈中,使得每个正方形的四个角上的数字和都相等。

首先细细地审一下问题:题目要每个正方形的四角和相等,那么共有几个正方形?明显地是有5 个小正方形。不过您是否意识到分成小格前的大正方形也有四个角:加上它该有6 个正方形。至于考虑顺序呢:最后这条件放在最后再考查。

这题有多个常规解答,思路是列等式找规律,求解路径各有千秋。除去这些外,给大家讲一个“神”解答;奥妙全在下面的两幅图里。

Square Mtx-Trsf

现在是见证奇迹的时刻哦,弄明白了吗?让我们把上下两个 3×3 方格分别叫做 图1 和 图2 。 图1的主对角线(A1B2C3)变成了图2里的中间一行,而图1中被对角线分开的两个拐角:右上和左下拐角,拉直后成了图2的最上和最下两行。

在图2中左上正方形的4个角点分别是 A1A2A3 B2. 他们的和不就是图1第一行和再加上B2 (中央格的数)吗?右下正方形呢?除去中央格的四个角点分别是C1C2C3,刚好是图1中第三行的三个数。那么如果图2中这两个正方形的四角点之和相等,等价的条件也就是图1中第一行的和,与第三行的和相等。
再注意到图二中的右上小正方形的四角和是图一中第三列数字和在加上中央格。类似地考察其他四角和条件。如每个边的中央小格连成的正方形,其数字和,要求也是同一个数。还有大正方形的四角数字和(
A2 + B3 + C2 + B1)要求也是同一个数。(关于最后两条件的考察–取巧的方式是先不作 再说)

如果图1中的填数字是按照魔幻方要求的:即每行,每列和两个对角线的和都相等,那么图二中的数字和就已经满足了多数条件。

我们寻求一个3×3阶魔幻方由数字 1357911131517 构成。这些数可由 123456789 加倍(乘2)后减1得到;而按每格如此变幻后:行和,列和,对角线和仍然相等。因而由洛书图的解我们能构造一个新解(每格数字分别乘二减一),然后按前述方法把对角线和拐角拉直:对于新问题的解就来了:[他们已经满足了所有条件哦!– 包括上段所说的最后两个条件;不信你自己验证嘛如下面图所示。

Solution-SquareMtx有点神解的味道:需要对代数原理和幻方的结构非常熟悉,而巧用变换。这个漂亮的解在一次作数学模型时由参加者发现:笔者觉得其构思的巧妙不逊于 高斯在算 1+2+3+…… + 100 时所发现的规律。推荐给有兴趣的读者欣赏数学方法和构思之妙。当然,此题不必这样作,但这样的解让人觉得好美,好神!即便杀鸡不用牛刀,还是可以“牛刀小试”吧?

GCF-LCM 和分数通约分 — 游戏找规律,运算不觉难

分数运算的学习,涉及到两个重要方法:约分和通分。相关的两个概念,是最大公约数(GCD, or GCF – Greatest Common Factor) 和最小公倍数 (LCM – Least Common Multiple)。这两个概念是分数教学中的难点。能不能让孩子学得不那末痛苦呢?可以,我们可以引入一些数学活动或者游戏。

下面介绍在美国老师(当然是好老师)作的一个 GCF-LCM 游戏: 也可叫最简分数游戏。是一套实验教材中介绍的,下图是游戏的基本图式。给定两个数一左一右,公倍数LCM 写在上方,公约数 GCF写在下方。GCFLCM-diag - 1

也许你说,这叫啥游戏啊?除了GCF和 LCM 的概念外,没带来新东西。也没有变化,没趣。其实不然。
我们先看求最小公倍数(LCM)的一个快捷方法:给两个数,先找GCF,然后从一个数中把GCF约去,再去乘另一个数。如求21 和 28 的LCM。找到GCF 是7,从28中约去7 得4,再用4去乘21,结果是 84. — 这就是他们的 LCM。有的学生从玩游戏中发现了这个规律。由于在图示的框架下,两个数以及GCF,LCM写在了菱形的四角上,在老师启发下学生是可以观察到规律的。在发现这个规律前,孩子通常做的是:

21 的 公倍数:21,42,63,84,105 ……
28 的 公倍数:28,56,84,112 ……

圈出两个序列中相同的第一个数,就是 LCM。没有相同的,就延伸序列再找。

我们的快捷方法是不是要快得多?而且从算法上是“安全”的:如果找到的公约数不是最大的,仍然可依此算出一个公倍数,只不过不是最小的;找到的公约数太大呢?包含了不应计入的因子;那末做约分(除法)时就发现了问题:赶紧回去订正公约数。

再往前走一步,有人注意到菱形的两个对角线上的乘积相等吗?这是必需的,否则一定填写有误啦!就是说 LCM(a,b) 乘以 GCF(a,b) 的乘积一定是 ab.

稍微变一下问题。A. 如果给出两个数中的一个,再给出他们的GCF,能否求出 LCM呢?B. 给出两个数中的一个和他们的LCM,能否求出 GCF呢?
问题A可以作出好多的(无穷个)解:给出了GCF 后,我们要求另一个数要含GCF 以及不含已经在这数中的其他因子,除此以外别无限制。这样LCM有好多可能性。例如给出了一个数是21,两数的GCF是7;那末另一个数必须含因子 7,不能含因子3;但是可含因子 11,13, 或者 11 x 49,都是允许的。满足条件的一个解可能是 7 x 11 x 49: 这样的解就太多了。
问题B一般也会有多解:但是解的个数有限。因为给出了LCM,就限制了两个数都不能太大(起码不能比所给的 LCM 更大吧)。如给出一个数是28,两数的LCM是84. 注意到84 = 28 x 3, 这个3 不是28 的因子;所以一定要出现在另一个数中。这个数的其他因子一定要来自28 的因子;如 2,4,7,14 还有28. 所有可能的解是 3,6,12,21,42 和84. 这些数和 28 的LCM 是84. 至于GCF呢,就分别情况来求吧。

net-CF-CM - 1看一下GCF – LCM 网。游戏变得更有趣一些了![这类游戏编写的一个拿手好戏,就是通过组合创造一些复杂性,增加一些建立在简单基础上的挑战;增加的一点波澜,会刺激孩子的兴趣,及学会观察思考,学会自己思考解决问题。]
如图所示,要在三个圈里填数:按照基本图示理解:两数的GCF 是1, LCM 是 28. 数28 和 第三数的LCM 是 112,二者的GCF 是刚才提到的两数之一。注意至少给出一个LCM 是很重要的,否则有无穷解 (无法定解)。上例是最简单的 GCF – LCM 网,通过更多的链接,可以造出更复杂的网(也别太复杂,适可而止)。

从教育角度说两句。为啥不直接使用分数计算作题海训练呢?一是引入变化增加了趣味性,让孩子爱做配合训练;二是通过图示框架观察找规律,孩子在启发下自己发现规律才印象深,也学会思考;第三:图上作业和单用数字文字比,更有意思,也在反复中比较 GCF 和 LCM 的区别和联系;达到概念清晰,熟练基本技巧–- 其实掌握任何技巧都需要一定量的训练。学习和训练中有阈值原理,要达到定量超越阈值,学习成果才能巩固下来。说明一点: LCM 和 GCF 的概念需要在游戏前介绍 — 最好配有例子; 这个游戏不是用来讲概念的,也是为了复习概念,再熟悉计算提高运算技巧。
最后同样重要的一点,研究思维科学的人特别强调简单图示的意义:在概念形成阶段,图示能在框架下简单清晰地表达概念联系,让我们的思维聚焦。等到完全想好后再用文字写清楚。这个原理在游戏中得到了应用。 游戏作玩后告诉学生GCF,LCM 的直接应用是分数计算:这时作分数计算(通分约分)就不畏难了,还觉得兴趣盎然。[还有的老师是先教了通分约分再来介绍这个游戏 — 这样学生们可以通过游戏熟悉 GCF,LCM 的概念和计算。] 学生们对于概念的理解更加深入,计算能力也有提高 — 算得更快!

留给读者一个问题。

prbl-LCMGCF - 1 您能完成左边的问题吗?还有前面给出的 GCF-LCM 网的那个问题?
左边问题的解释是(回忆基本图示):求一个数,与 22 的最小公约数是242;并且求出其与22 的最大公约数。提示:答案不唯一。