Mysterious Unbalanced Sheets on Loans

– story told by hunchbacked shopkeeper

Once there was a hunch-backed shopkeeper. And he told the following story:
(For readers at grade 6/7 level and up)

“Once I lent 100 dinars, 50 to a sheik from Medina and another 50 to a merchant from Cairo.

“The sheik paid the debt in four instalments, in the amount 20, 15, 10 and 5. .. .. Note that the total of his debt balance is 50 dinars.

1st Installment: Paid 20 & Still Owe 30
2nd installment: Paid 15 & Still Owe 15
3rd Installment: Paid 10 & Still Owe 5
4th Installment: Paid 5 & Owe 0
Total Paid 50 & Total Owe 50

“Meanwhile the merchants from Cairo also paid the debt of 50 dinars in four instalments, in the following amount: 20, 18, 3 and 9. And here is the balance sheet for his debt.

1st Installment: Paid 20 & Still Owe 30
2nd installment: Paid 18 & Still Owe 12
3rd Installment: Paid 3 & Still Owe 9
4th Installment: Paid 9 & Owe 0
Total Paid 50 & Total Owe 51

“But note his total owed is 51 dinars”, remarked by the hunchbacked shopkeeper; apparently this should not have occurred.

Using a bit math, can you help our shopkeeper to solve the mystery?

Think on your own first!

Then you might want to take a look at our explanation. Do you agree with us?

竞赛问题:正整数的关联Murray数

竞赛问题:正整数的关联Murray

(English version is being prepared and corrected – to be posted soon)

你听到过正整数的关联Murray数吗?其实是一个蛮有趣的问题,基础在于完全平方数的简单推理–简单归简单,可是要严密哦!今年的CIMC(加拿大中级数学竞赛 – 910年级组)就出了这样的问题。

先来看一下定义:

For each positive integer n, the Murray number of n is the smallest positive integer M, with M >n, for which there exists one or more distinct integers greater than n and less than or equal to M whose product times n is a perfect square.

对于正整数n, 指定n 的(关联)Murray数是有如下性质的正整数中最小的那个:存在一或多个不同的大于 n 但不超过M的整数, 这些数的乘积 再乘上 n 得到一个完全平方数。

本文注:(关联)Murray数可就叫Murray 数。“关联”一词主要强调 Murray M和给定整数n 间是一个数学关系。完全平方数就是整数的平方,如1, 4, 9, 16, 25, .. 一直下去。

例子:3 × 6 × 8 = 122, 且找不到一或多个大于3 但是都比8更小的整数使其积再乘3是完全平方。

这个定义要多读两遍,确保理解。定义是写在题目开头的,所以无需事先知道,但是做题前一定要弄清意义。然后看下面的–就是CIMC 的问题 。

(甲)6 Murray 数被发现是 12。说明为什么。

(乙)决定 8 Murray 数。

如果稍有点数学底子,这似乎不是难题,尤其问题(甲),看来唾手可得。主要的挑战!其实是在严密上。(“说明为什么”就是证明的意思。)

比如这样的说明:因为 6 × 8 × 12 = 576 = 242 而且 6 < 8 < 12, 所以 12 合乎Murray数的定义。注意了!这个说明有点问题。因为按定义,任何数的关联Murray数只有一个,要尽量的小。所以验证 12 符合条件还不够,必得说明在6 12之间其他的数(7, 8, 9, 10, 11)都不行,从而排除。

现在说明 7 (或 11)不能成为 6 Murray数。他们不能在定义的完全平方式中出现。小于7的数字不能含素数因子7,所以7再次出现要等以后(至少等到14 吧)。11 是同样道理。9 是完全平方,假使在完全平方式中现身,那末去掉因子9以后还是完全平方数。8 10 也不行(理由从略)。

现在来看问题(乙)。答卷中有认为 8 Murray 数是18 的,理由是:

8 x 18 = 12 2
或 8 x 9 x 18 = 36 2

9 18 都大于8,且不超过18

这解不正确!有些细节可能被忽略了。第一是Murray 数只有一个,是满足如此如此性质中最小的那个。以上验证不足说明 8 Murray 数是 18,只是说明Murray数肯定小于 18 (依定义也知大于8)。此外在 完全平方的表达式中应有几个因子?定义里没说,唯一要求是这些因子相异。(不能因为例子中给出3 个因子,就把特例当一般。)看下面的式子:
8 x 10 x 12 x 15 = 1202
或者 8 x 9 x 10 x 12 x 15 = 3602

按定义,8 Murray 数必得不超过15. 且找不到更小M <15可用n, M 间的因子做积再乘上8是完全平方数。故 15 是解。

这问题真让人痒痒 – 答题时或者说明不严谨,或者理解有点偏差;于是与正确的解失之交臂。

至此文初提到的两个问题,已经完全解答完毕。如果有兴趣,不妨再往下读。

**********  ***********  **********  **********  **********

原题中还有另两个问题,我们举其中一个分析一下。

(丙)证明有无限多个这样的正整数n 满足:n 不是完全平方数,n Murray 数小于 2n.

这题的证明很容易跑题。要求既不是说明 n Murray 数可以小于 2n,也不是要说明有无限多个正整数n。也非 n Murray 数一定小于2n。这样说吧(也许从反面理解更容易)假如有人声称他已经找到了所有关联Murray数小于2n — 即原数2 倍的情形;那你一定可以对他讲“且慢,你一定漏掉了一些”。

(丙)其实不难,有兴趣的可钻研。我们给两个提示(窗户纸已捅破 – 再往前走一步便是证明了)。

假如有人声称他已经找到了所有关联Murray数小于2n — 即原数2 倍的情形; 那么一定可以告诉你最大的一组。现在你对他讲:我还有更大的一组,你一定漏掉了。这样开启了如下对话:(假定你是 B

A. 我已经找到了所有 n关联Murray数小于2n — 即原数2 倍的情形。一共有有限个。

B. 你找到所有这种情形的数了,并且有限个。那其中一定有最大的。能告诉我最大的n 吗?

A. 当然。n = xxxx.

B. 哦,4n Murray 数也一定会小于4n 2 ; 所以你把 4n 漏掉了。

A. 那就再加上 4n, 其中 n 是我刚讲的数。

B. 你一定还漏掉了4 (4n), 也就是 16n.

看出来了吧…… 这样下去一定没完没了。

有趣吗?弄明白了肯定有意思。知识点不难,但这题对于思维素质是有要求的。

17 年蝉 — 素数生命周期蝉猜想

自然界中有一种蝉,拉丁名叫 Magicicada Septendecim,是昆虫里生命周期最长的:十七年。他们的生命从地下开始,幼虫从树根中耐心地吮吸汁液。过17年后,成虫从地里冒头,成群结队,一时间泛滥了整块地界。几周之后,他们交配产卵,后悄然死去。产下的卵也要待17年再冒头。(另有一种叫 Magicicada Tredecim,生命周期是13 年)。

生物学家相当困惑:为什么这种蝉的生命周期这么长?
一个数学爱好者客串回答,他注意到13 和 17 都是素数(即除了1和自身以外无其他约数),于是就提出了下面有趣的假说:

设有一种寄生于蝉的虫子。蝉冒头时一定要避开这种寄生虫的大年(即最繁盛的一年)。因为碰到寄生虫不是好事,会影响到这一代蝉的群体健康和生活质量。如果该虫的生命周期是 2 年,那么为了蝉自身的好处,蝉的生命周期是单数才好 (两代蝉中只有一代会遇到寄生虫的大年,比每代都撞上好。)同样地,为了蝉自己,生命周期最好也不是3的倍数,5 的倍数,…… 于是,比较合理的就是一个不太小的素数了。

对于17年生命周期的蝉,如果寄生虫的生命周期是 1 年,那么假设这一代蝉不幸遭遇寄生虫的话,过17代才会再次遭劫。如果寄生虫的生命周期是 2 年,那么也是再过17 代 (年头当然更长,是34 年)。对虫子来讲,17 代中只一代遇到十七年蝉的这个结果是不变的,只要寄生虫的生命周期是整数年(合理的假设)。而对蝉来讲,当寄生虫的周期从1年-16年 变化时,蝉已经越来越难遇到寄生虫的大年。如果寄生虫的生命周期是17年,糟糕了:可能每次都撞车:蝉被虫子克了。

论理,寄生虫的生命周期应该比较短,以此来增加繁衍和找到适合寄主的机会。寄生虫刚好也是17年的机会很小。而且,虫子没有机会了解蝉的生命周期;假定它能够逐渐延长生命周期(经过许多代),那么生命周期是8年时,仍会错过17年蝉的大年,除非下一代的周期立即变到9年。不过就这一次,接下来的几代还要再错过。
这个称为“素数周期蝉”的猜想得到证实了吗?我们先要问,怎样才算证实呢?这样提问题也很有趣。我们只能说“素数周期蝉”是一个合乎情理的猜想。数学和科学也有,而且需要,大胆的想象和猜测!

通过这个有趣的例子,让我们对于素数也有了更多认识!你作分数加法时,假定两个分数的分母是不同的素数,知道怎末做的人可能会说,My God!因为通分以后的公分母一定很大,刚好是两个分母的乘积。比方你如果做 (2/7) + (1/13) = ? (七分之二 加上 十三分之一 等于什么)公分母是 7 乘 13 得 91。蝉和寄生虫的公共大年,也就在找最小公倍数,和通分的概念是一样的。

一个神解 — 模式和变换 — 正方形幻方问题

神解是什么?在数学里,就是那些好美妙好神奇的解,恰到好处。好似飞来之笔,其实是有规律可循的。我们看一个正方形幻方的问题。

Prob Square Matrix

如上图所示的是一个正方形幻方。请把 1, 3, 5, 7, 9, 11, 13, 15, 17 这九个数填入到其中的圆圈中,使得每个正方形的四个角上的数字和都相等。

首先细细地审一下问题:题目要每个正方形的四角和相等,那么共有几个正方形?明显地是有5 个小正方形。不过您是否意识到分成小格前的大正方形也有四个角:加上它该有6 个正方形。至于考虑顺序呢:最后这条件放在最后再考查。

这题有多个常规解答,思路是列等式找规律,求解路径各有千秋。除去这些外,给大家讲一个“神”解答;奥妙全在下面的两幅图里。

Square Mtx-Trsf

现在是见证奇迹的时刻哦,弄明白了吗?让我们把上下两个 3×3 方格分别叫做 图1 和 图2 。 图1的主对角线(A1B2C3)变成了图2里的中间一行,而图1中被对角线分开的两个拐角:右上和左下拐角,拉直后成了图2的最上和最下两行。

在图2中左上正方形的4个角点分别是 A1A2A3 B2. 他们的和不就是图1第一行和再加上B2 (中央格的数)吗?右下正方形呢?除去中央格的四个角点分别是C1C2C3,刚好是图1中第三行的三个数。那么如果图2中这两个正方形的四角点之和相等,等价的条件也就是图1中第一行的和,与第三行的和相等。
再注意到图二中的右上小正方形的四角和是图一中第三列数字和在加上中央格。类似地考察其他四角和条件。如每个边的中央小格连成的正方形,其数字和,要求也是同一个数。还有大正方形的四角数字和(
A2 + B3 + C2 + B1)要求也是同一个数。(关于最后两条件的考察–取巧的方式是先不作 再说)

如果图1中的填数字是按照魔幻方要求的:即每行,每列和两个对角线的和都相等,那么图二中的数字和就已经满足了多数条件。

我们寻求一个3×3阶魔幻方由数字 1357911131517 构成。这些数可由 123456789 加倍(乘2)后减1得到;而按每格如此变幻后:行和,列和,对角线和仍然相等。因而由洛书图的解我们能构造一个新解(每格数字分别乘二减一),然后按前述方法把对角线和拐角拉直:对于新问题的解就来了:[他们已经满足了所有条件哦!– 包括上段所说的最后两个条件;不信你自己验证嘛如下面图所示。

Solution-SquareMtx有点神解的味道:需要对代数原理和幻方的结构非常熟悉,而巧用变换。这个漂亮的解在一次作数学模型时由参加者发现:笔者觉得其构思的巧妙不逊于 高斯在算 1+2+3+…… + 100 时所发现的规律。推荐给有兴趣的读者欣赏数学方法和构思之妙。当然,此题不必这样作,但这样的解让人觉得好美,好神!即便杀鸡不用牛刀,还是可以“牛刀小试”吧?

数学王子高斯:生平,贡献和启示

高斯,全名约翰卡尔弗雷里奇高斯,1777 – 1855,是德国数学家。幼时聪颖,最著名的故事就是他小学时怎样回答老师给他的那道数学题,让他算一加二加三 …… 一直加到一百。高斯从两边分别取数加起来: 1 + 100 = 1012+99=101,…… 如此下去刹那间就算出来结果是 50 × 101 = 5050. 这是上小学的高斯自己想出来的;稍加推广,就可以解决任何等差数列求和的问题。这是真正的天才杰作,成就了神童之誉。高斯在数学领域里终身建树颇丰,有数学王子 (Prince of Mathematics)之称。

高斯的工作涉猎数学的多个分支。除了数学外,他亦探入或与人合作探索天文和物理领域。在他的早期成长中,对于神学和语言学亦显出不同反响的理解才能。

高斯的最主要成就和他受的教育

少年天才的高斯接受了正规严谨的教育,曾在卡罗琳那学院和世界知名的哥廷堡大学共学习六年(1792 – 1795, 1795 – 1798)。1796 年高斯19岁时他就发现了用直尺和圆规作正十七边形的方法:继承了来自古希腊的数学传统–只要可能的话,就只用直尺和圆规完全准确地作出任何几何图形。

1799年(22岁),高斯的博士论文改进了现在称为代数基本定理的证明。该定理说:复系数多项式至少有一个复根;通过因子分解的过程,这表明 n多项式在复数域有n个根。在严谨性上,高斯的证明比前证明进了一大步。

高斯用直尺和圆规作正十七边形的方法,是建立在传统上的,用到了代数,还联系了可作图性与费尔马数。这成为他最得意之作;今天学习纯粹数学的人仍把它当作代数和几何结合的典范。分圆多项式理论就是在这工作中萌芽的,后得到进一步发展 (不仅是他本人的工作)。在博士论文中的证明,他自己还不满意:用了一生时间来改进代数基本定理的证明(见下文)。

非这两个工作莫属高斯一生的代表作。

其他工作

21岁时(1798年)他完成了算术教程(这里,算术主要指现在称为‘数论’的内容 – 数论是数学中即基础又高难的一分支)。由此奠定他在数论上的地位。数论中最常用到的模同余的记号,也是由于高斯的提倡而成为标准。例如,16 除以7,余数是2,在模同余理论中,写成 16 ≡ 2 (模7)。记号≡读作同余;这大大简化了表达,体现了大家风范。

高斯还结合圆锥曲线和高次方程组(高至8次)开创了(理论)天文学的工作。其中用到了一些复杂方法如付利叶变换和三角插值。1801年(24岁),他的理论预报当年即得到天文观测的证实。此后,高斯与物理学教授Wilhelm Weber长期合作,富有成果。他建立了磁观察站和磁俱乐部,是电磁学理论的先驱之一。他的工作也涉及到光学领域。他还主持了当地大地测量(1818 年,在汉诺威王国,现为德国的一部分)。正态分布,又称误差分布,高斯分布,在实验和统计数据处理上有重要意义。高斯在其中的工作从“高斯分布”的名称上就可以看到。

我们难以尽数高斯的成就。那个 1+2+3+ … + 100 的故事,由此衍生了高斯序列(或者三角形数:如1,1+2=3,1+2+3=6,1+2+3+4=10,…; 1,3,6,10 就是三角形数);而高斯的一个发现,是任何自然数可以写成不超过三个三角形数的和 — 来自他笔记 (”ΕΥΡΗΚΑ! num = Δ + Δ + Δ”)。喜悦之情溢于言表 — 我们看到王子在数学世界的快乐!这是1796 年,他发现正十七边形尺规作图法的同一年。这是年轻时随手的作品,是大师的小品。

他用一生的时间改进他的工作,推敲每个细节。在1849年(距首次发表已有50年之久;当时他已经72岁高龄)高斯给出了关于代数基本定理的一个证明,按近代标准完全严谨。天才也如此磨砺自己的工作,让人感佩!晚年高斯成为荷兰皇家协会会员及荷兰艺术科学学院院士(外籍)。他不为名所累,提携后人,欣赏同行,对新秀黎曼在曲面几何上工作由衷称赞。

高斯的启示

每个人都能够从高斯的故事和贡献中得到一些启示。少年神童很多,但是成就堪比高斯的寥寥。高斯治学毫不浮躁,终其一生改进早期已作出的成果,仅此就让今天的浮躁者汗颜。高斯既无愧于少年神童,而他的学术成就和地位却来自于追求进取和不断磨砺。为后世治学树立了榜样。

八边形的面积 (好简单!)

看下面这个图,请!

Rotate-Square-Octa-lbl

很有趣,是不是?

这个图有一个圆,圆内接的一个正方形,再加上那个正方形旋转45度以后的新正方形 组成的。其他不过是线和线,线和圆弧的交点而已。这个图其实不复杂,但是蛮有趣。

两个正方形的边是相交的,得到 8 个顶点。把这些顶点依照顺序连接起来,我们得到一个八边形。请参看上图 (如果看不清,点击放大), 原正方形ABCD 和 旋转45度后的新正方形 A0B0C0D0 交于 8个点: 按顺序连起来,得到八边形 E1E2F1F2G1G2K1K2. 这个八边形是一个正八边形 (即所有边的长度相等,所有内角的角度相等),你能证明吗?

利用对称性加上旋转的性质,很容易找出若干全等的三角形。由全等形的对应边相等,对应角相等就能得到正八边形的结论。(提示:旋转45度在这里起了关键作用。正方形的4个顶点把圆周分成四段,每段90度;45度刚好一半。如果旋转90度新正方形和旧的重合,旋转45度交点构成正八边形。如果旋转的是 0-90度之间任何其他角度,交点也构成一个八边形,但不会是正八边形。)

大一点的正八边形是把原来正方形和新的正方形的顶点交替连接起来,于是得到 AABBCCDD . 类似地,可以说明这是一个正八边形。

八边形的英文叫做 Octagon,和它类似的有个词Octopus 章鱼,因章鱼有八条腿。Wow,我们做出了正八边形 (联想:章鱼)!

下面来看两个有趣的面积计算。给定原来正方形的边长等于2,那末,

1) 正八边形 E1E2F1F2G1G2K1K2 的面积是多少?

2) 正八边形 AABBCCDD 的面积是多少?

我们先看第一个问题: 注意到正八边形 E1E2F1F2G1G2K1K2 的面积是正方形的面积减去四角上的四个小三角形面积;而这些小三角形是全等的。小三角形(比方说 等腰直角三角形E, 在顶上的图里,就是角上浅蓝色的小三角形) 的边长呢?这个要稍微用点劲。

注意到 A : K : E = 1 : sqrt 2 : 1, 其中 sqrt 2 是2的平方根,大约是 1.414, 或者7/5. 我们只要把 A0B0 = 2 分成 (1+sqrt 2 + 1) 份,取出 1份,就是E 的长度。而E = E = 2 ÷ (1+sqrt 2 + 1). 所以等腰直角三角形E 的面积就可以算出了(直角边相乘,别忘了除以二)。把这个面积乘以4,从正方形里减去,就是八边形面积的答案。刚刚我们完成了什么?八边形的面积计算!一点不难,是不是?

好了,我们把第二个问题:

2) 正八边形 AABBCCDD 的面积是多少?

留给读者思考。