Smart Solutions for Some Equations (Quadratic, Polynomial and Rational)

 

Let’s look at a few problems on solving equations of different forms.

Find the smaller root for the following.

Problem (a).  (2-x) (3-x) = 2 / 3

Problem (b).   x (x-1) (7-2x) = (3-x) (4-x) (4-2x)

Problem (c).   [x (x-1) ⁄ (3-x)] + [x (x-1) ⁄ (4-x)] = 4 – 2x

Relating to equations above, we plot several curves using Geogebra (an app which can produce the graph for given functions – of course, this is only one feature of the many).

What’s interesting is all the three equations as in (a)(b)(c) share a common solution, and it can be found through algebraic manipulation. Take a forward look (click) here – you will see amazing graphs; the solution (roots) shall be some intersection points.

 

Of these questions, the challenging levels are in the order of ascending: from average level like (a), to somewhat challenging like (b), to very challenging in (c). For better understanding, we suggest the reader to try solve questions (a) (b) (c) first; and then compare with the solution provided in this file (pdf),
where we solve algebraically only for (a), but applying a combination of algebraic and graphic solution to tackle problems (b) and (c).  It’s called smart solution — we are applying a variety of tools at hand, not just following a fixed procedure.

 

Combining graphing with algebra facilitate us to guess where the root(s) of the equation are, or (sometimes) make observation of the roots easier. It’s also fun!

Try work out these equations first, then you can check out the solutions (pdf) here.

Now you can take a second look at the graphic solution. Have you seen and understood more, about the question, and about the how algebraic manipulation plays out in function graphs?

不一样的数学探索 —有趣,直观又有用

可以吗?在平面上任给5个点 (where no three points are on the same line),可以选3个点用直线连成三角形,让另外2点都在这三角形的内部吗?有些情况下这能做到,但是总能作到吗?当这个仿佛天边飘过来的问题(既简单又似无从下手)提给 15左右的学生时,不少就表现出跃跃欲试的兴趣。有一个立即发表意见:"总是可以,只要找到最外面的三个点,余下的就在里面。"

Yes Interior -2同伴反驳了,他举了一个例子:取呈正方形的四个点,无论取哪3个,都不能把另一点包含在其中。第五点呢,比方说在正方形内部。还是没办法取出含另两点在内部的三角形。
有学生补充说,如果五个点在一个圆上,都不能取出三角形把另两点含在内部喔。

Not-Interior - 1教育中从简单开放的问题出发,易于参与。比方说 什么叫“最外面的点”?反驳的孩子的思路也好棒,他是举例说明有不行的情况。提醒注意,要鼓励的是探索,动脑筋思考,发表意见要重事实和逻辑,不嘲笑攻击别人。这才是安全探索的环境。和同行讨论时有共识,启发思考,东西方都有好的做法,有共通的东西。简单贴上东方,西方教育的标签,捧一个打一个,是我们一直不赞成的。


******

数学家,数学教育家 Polya 讲过(大意),好老师善于提问题引导学生深入。通过上面讨论,文章开头的问题不是总能做得到。有时能,有时不能。那么什么时候能,什么时候不能呢?可以想一下,答案在文中说明能和不能的两幅插图中找。先注重观察特征,然后再想怎么表达清楚。有兴趣的切磋一下,问问你的孩子。

问题的意义也许不在于记住答案,在于启发思考和表达。在技术和社会领域,要能够跳出框框,这也是能力。对比传统几何教育的套定理证明,这样的探索更有意义,能启发心智(传统几何自有存在意义,此另当别论)。在从众的潮流中能思考堪称可贵。

­

化三角为正方的问题: 一波三折,耐人寻味

亲爱的读者,这是一个蛮有趣的问题:给你一个正三角形(即等边三角形),你能把它切割成几块,然后拼成一个正方形吗?

也许你完全摸不着头脑:其实这个问题是一个经典老问题。有意思的是,曾广为流传的一个解法其实是有毛病的,但却瞒过了许多人。后来才有人火眼金睛地发现了问题,经过一波三折,终于有了漂亮而完美的新解法!

下面这张图就是曾经广为流传的一个解。(图是新画的,画的人也知道图中有误 — 但是作为数学教育,我们必须学会审视错误和偏差。)

Triag-CutGlue-Square看明白了吗?参照上图:沿着ABC 的方向是一个正三角形,即AB=BC=CA (三边长相等)。把它切成四块(图中分别涂了黄绿蓝粉色),然后让绿色块以E为中心旋转180 度,粉色块以D为中心旋转 180 度,再把蓝色块移到最上端,诺,看到新成的正方形了吗?从MDME 分别延长出去的是两个相邻边,MA再延长到最上面的顶点是对角线。看起来活脱一个标准正方形呵,只是旋转了 45 度,对吗?从图形的对称性,新成四边形的四边都相等,应没有问题。四个角呢,那恰是环绕M的四个直角,经过翻转移动,最后变成了新四边形的四个直角。四条边相等,四个直角,那不就是正方形了吗?

没有真地拿剪子裁开,拿胶水粘上去试一把,可能有些想当然了。试一试,还真能粘上。几乎大功告成之际,有人发现了破绽,看看四个角,好像不是直角哎?如果不是直角,但是四边都相等,那就只是菱形,不是正方形了。

再细看看。DEABAC 两边的中点(就是说DA=DBEA=EC),FGBC的两个四分点(BF GC各是BC的四分之一,FG 占了BC的一半)。(略去推导)DEGF应该是一个长方形。DGEF呢,是这长方形的两条对角线。长方形的两对角线交成直角吗?一般不是,除非长宽相等(不信就试试)。那DE = DF 吗?DE 是正三角形边长的一半,DF呢,是三角形高的一半。高线总比边长要短些的,对不对?所以DF < DE; 于是两条对角线的交线不是直角,即环绕M的四个角都不是直角。经过翻转成为新四边形的四个角,也非直角也。

结论:新成的四边形真的不是正方形,只是菱形(也有人把它叫做钻石形–Diamond Shape)。我们计算了一下,角 FMG 大约成 98.2 度的角度。

假使没注意到交角上的破绽(不是直角),还有一个办法看出问题:既然新四边形是由原三角形裁剪拼成的,那么他们的面积应该相等咯。面积的计算稍复杂些,不再详细讨论:只提一下如果正三角形的边长是 2,那么它的面积是 3 的平方根(约为 1.73);而新四边形按照构造方法,边长应为2的平方根,所以如果是正方形,那么面积是 2,而2 不等于 3 的平方根,所以新四边形一定不是正方形!

还有操作性特强的办法发现问题:从E出发,作 DG的垂线,延长到和BC 相交。传统几何中非常讲究作图法,而且只用直尺和圆规。如果不熟悉,还是可以借助量角器完成作图,对吗?一画图就发现问题了,垂线不通过M,延长后与BC 的交点也不在F,有偏差。

能不能改正这个偏差,裁剪拼出真正的正方形呢?有的学生脑子快,马上想到一个新招。菱形是特殊的平行四边形,而平行四边形总是可以裁剪的.通过裁剪形成了四个直角。于是这位学生说,基于菱形,因为四边已经相等,所以裁剪整出四个直角后,那就是正方形了。有人反对,要裁剪两次,太麻烦了吧?而老师的意见是,麻烦不麻烦其实是第二位的,我们首先要较真一下,按这个过程得到的果真是正方形吗?

确是个好的尝试,可是有有点问题。细想一下裁剪平行四边形的过程,就发现裁剪再粘上的结果,有一边长度未变,而另一边却成了原平行四边形的高线,因而长度比原边缩短。既然裁剪前长度一样,作了这个过程后就不再相等了。当然在这问题中差别蛮小,所以得到的是长宽很接近的一个长方形。

培根有句名言:“数学使人精细。”正确求解一个可能途径是,在BC 上求一点X,使得EX刚好等于新正方形的边长。F 和 X 其实就差那么一点点。我们要做的:从原三角形的面积等于新正方形的面积,求出新正方形的边长 s,然后求FBC上的位置, 使得 EF = s. 这是求解的第一步。正解已经呼之欲出。

说明:
1. 前辈蒋声先生最先指出开明书店旧版的 《数学万花筒》 中的一幅插图是错的,那图所指的就是化三角形为正方形的问题。真正的火眼金睛!在他后来80 年代的著作《几何变换》 中亲自改正了原图。

2. 插图取自公众号 数学教学研究,向邵勇老师致意。(他同时给出完全使用直尺圆规作图的解法。)

本文目的不在于建立严格解法,而讨论如何以审视的目光发现问题和解法的破绽。

看到和改正错误是数学的基本功之一。

水,肥皂泡,和水立方奥运会馆 — 背后的数学故事

水,肥皂泡沫,还有水立方的场馆象是不相干的话题。但是关于结构的研究和话题把他们联系到了一起。这背后的数学故事,亦引人入胜!

(一)

肥皂泡沫,各位洗头沐浴时一定见过。泡沫和水是分不开的。啤酒泡沫是另一种,里面也有水,飘浮在啤酒液体表面上。(据说倒啤酒的技巧体现在尽量少的泡沫 – 这是另话。)而水立方馆的建设,基于一种类泡沫结构:正式名称是 Weaire – Phelan 结构,在1994年通过物理实验和计算机启发算法找到。
而更奇妙的,从1873 年物理学家Joseph Plateau 提出来肥皂泡结构四定律,到Lord Kevin 1887 年的一篇论文给出肥皂泡结构的完整模型(基本定律在之前已作好,Kevin的贡献是建立了肥皂泡的多面体模型),再到2008年的水立方场馆,中间经过了135年。场馆的设计由澳大利亚一家 PTW 建筑结构公司完成。他们选择了类泡沫Weaire – Phelan 结构作为水立方的基本构成单元,是为了让场馆的落成成为体育,数学物理和设计艺术完美结合的庆典。当然,水立方名称的由来,来自中国人的哲学 — 对于水的喜爱。但是“立方”之名,可不是毫无道理:你见过大体方正,立方体形式的泡沫吗?本文就要跟你解释这些问题,原始素材取自 Matt Parker 的一篇科学读物。

小时候吹过肥皂泡吧?你一定记得肥皂泡泡有一个球形的表面,在阳光下泛出七彩。先从球形说起:第一,单独的肥皂泡是球形,这背后是有科学原理的,是因为在同样体积下球体的表面积最小(或说在同样表面积下球体的体积最大 – 称为球体的极值性质)。肥皂泡表面张力约束的是表面积: 大自然本身有优化的功能,所以你能吹出尽可能大的肥皂泡。第二,球体有极值性质当然好,但是用球去充满一个三维空间,却是相当差的选择。就像你拿圆形的硬币摆在桌上,要么硬币间有重叠,要么之间有空隙;你永远无法排出一个硬币间不重叠而能够盖满整个桌面的硬币阵列。球体也一样。把一堆橘子或苹果或西瓜排在那里,之间一定有缝隙:这有利通风保鲜;可也意味着运输时需要更大的空间。所以运输商总想找到更有效率的排法。结果呢,即便最有效的排法,也只能利用空间的 74.048%,略逊于 四分之三。当然如果不太贪心,这已经够好了:要不让水果喘气,会很快烂掉的。

当你观察一堆肥皂泡(或者啤酒泡)时,那些小泡泡并非球形:他们相互挤在一起时变化了形式。我们想找一个极端的列子:我们想观察有没有方的(或者大体是方的泡沫)。这当然要条件了。即使你把脸盆做成方的,把肥皂融在里面,也未必看到方肥皂泡。方形在需要充满整个空间时绝对是最佳选择。拿一堆小立方体是不是能够无缝地搭起一个大立方体来。

回到本题:是什么让科学家们对于泡沫结构如此着迷呢?泡沫结构有非常独特的性质。单独的肥皂泡是球形 – 满足极值原理;肥皂泡挤在一起是能够充满整个空间(差不多100% 充满),所以你洗头才好洗得干净。科学家Joseph Plateau设计的实验,真的观察到了方的肥皂泡。进一步观察揭示出:当肥皂泡挤在一时,呈现十二面体的结构:这个结构在边缘形成接近直角:形成好像“方型”泡沫。有人可能问,为什么不干脆是正方体呢?因为在同样体积下,肥皂泡十二面体的表面积比较立方体更小。在这里,“极值原理”起了作用。

“上善若水”,取自老子·道德经。这句话一直被推崇。水看来很柔,却能以柔克刚,锲而不舍地在大山中雕刻出深谷。那末泡沫呢?能圆能方,是不是很神奇!泡沫是球形的时候满足极值原理;是方形时其结构适应了环境,也没完全放弃极值原理;而是折衷妥协地恰到好处。和水比:泡沫真有青出于蓝而胜于蓝的味道。

奥运会馆的“水立方”,是2008年奥运会的主场馆之一,大家都已熟悉。下面是水立方正面壁的图案,我们看到啦许多五边形和六边形,他们接近 Weaire – Phelan 结构的立体展开图 (不完全是:为加强视觉效果,图中的多边形做了一些随机扭曲)。FPnt-WaterCube仔细看一看,欣赏喔!

如果你的好奇心被激发了,恭喜你!若是还有进一步探究的愿望:本文有第二部分,什么是占据空间的百分比,肥皂泡正12面体的结构,还有 Weaire – Phelan 如何改进了泡沫结构,创造了胜过自然的结构(仍可以充满空间,但是同样体积约束下表面积更小)。

请继续阅读。

(二)

一个多面体不重叠地占据空间的百分比(即是 Tiling efficiency)是怎么计算出来的。我们简单举个例子:计算圆形占据平面的百分比的最大值。想象一下把圆尽量紧密地排列在一起,但是不许重叠,不许变形(No overlap,No deformation), 圆还得是圆:这样最多能占据多少空间?这个技术问题说起来相当化时间,也有点沉闷;但是有助于准确深入地理解我们讨论的问题。我们暂时略去了。

好,现在要仔细说肥皂泡了,先从肥皂泡四定律开始说起。头二条好简单,说肥皂泡总是看起来很酷,表面光滑;且各处弯曲程度相等 (就是曲面曲率各处相等)。后二条是泡泡之间的几何关系,说它们的面总是三个一组相交成为边,而这些边呢四个一起相交形成顶点。这就是也许不那么出名,却是对探求肥皂泡结构至关重要的肥皂泡四定律,由物理学家 Joseph Plateau 在1873 年提出。

方肥皂泡有12面体结构:如下图所示。

SOAPFilm geomodelnet+for+rectuangular+prism

每个面都是一个五边形;注意不是正五边形,其中一边要比其他四边都长一些: 按比例大约是 1.31 :1。这是平面展开图,在北美的教材中被称作 Net。如果还不明白,它旁边的小图是长方体的 Net。简单说,Net 的每个多边形是一个面,在两个多边形相交的地方折叠一下,折成一定角度,然后让所有的面围成一个封闭空间,然后用胶水粘结起来,就做成了 (真的多面体)!立方体比较简单,全部折成直角。肥皂泡的12 面体该折成什么角度 – 那还要复杂一些了。师从自然,我们感受一下效果吧。

如方肥皂泡立体效果图所示:外面的立方体是一个线架,悬空在中间的是就是方肥皂泡:SOAP filn per注意观察在顶点周围弯曲的情况。
Joseph Plateau 观察到的方肥皂泡不是严格方的,在各个顶点上形成略大于90 度的钝角。说明一下,这个结构完全满足 Plateau 的肥皂泡四定律。呵,有人惊讶:前述12面体就是这个样子吗?是啊!看起来真像正方体,只在角顶点有点弯曲:而细究其结构,既复杂又简单!(初看复杂,其实各个面都是一样的:所以还算简单呢 — 或说蛮酷啊)

接下来就要看 Weaire – Phelan 结构啦。它的Net 如下面图所示。数一数一共 14 个面:其中的12个每个面还是五边形, 但是看起来更不规则,有两个对边特长,有两个临边相等,还有一边特短 (按比列是 1 :0.86 :0.86 :1 : 0.576)。还有两个面是不规则六边形,有一对边特长,是其他边的 1.52 倍。六个这样的结构折叠起来在空间拼合,其效果图画在旁边:请注意,接合处应当没有缝隙(当然图中稍微错开了一点,以便读者看得清楚;延伸的阴影显示接合面)。

WeariePhelan cellWearie-Phelan effect

Wearie-Phelan 结构显然是受到了肥皂泡结构的启发。那末怎样比较他们的性能呢?他们都能充满整个空间,在这一点上无分伯仲。于是比较同样体积下的表面积。因不规则性,计算起来是够复杂的,我们不Bother 读者具体过程了,就说一下结果。首先与正四面体结构,正六面体(即立方体结构)相比,在相同体积时,肥皂泡结构的表面积明显缩小(这倒可以算;读者不妨试算或去问数学老师)。而在同样体积下,Wearie-Phelan 结构的表面积比肥皂泡结构还要小 0.3% (即是后者的 0.997)。通过计算机穷举验证,Wearie-Phelan 是所有用全等结构(即大小形状一样)完全充满空间的结构中表面积最小的,但也只是小了 0.3%。可见造化的神奇,给人们留的优化空间相当有限。考虑到肥皂泡结构的相对简单性,是否可以说:大自然不做过度优化而恰到好处。

这个数学故事讲完了。我们得到怎样的启示呢?从中我们惊叹自然的神奇,也可惊叹人类思考力和创造力的伟大。肥皂和啤酒的特征是表面张力较大,易形成泡沫。虽是人类所造,但是冥冥中契合了自然的原理:大自然给了泡沫优美的形状和特性:既部分满足极值原理,又能充满全空间。在这一点被揭示出来之前,没有人意识到泡沫如此神奇。是造化的神奇,还是思想的威力?都是。而Wearie-Phelan 结构的提出,则是把这个结构最终推向了极致 – 树立了人类探索和创造的一个丰碑。

这个故事也让我们领会到数学和科学的力量:如果自然是一本书,那末这本书主要是用数学和物理的语言写成的。读懂这本书不易 – 但真的有趣有味道,引人入胜!

数学王子高斯:生平,贡献和启示

高斯,全名约翰卡尔弗雷里奇高斯,1777 – 1855,是德国数学家。幼时聪颖,最著名的故事就是他小学时怎样回答老师给他的那道数学题,让他算一加二加三 …… 一直加到一百。高斯从两边分别取数加起来: 1 + 100 = 1012+99=101,…… 如此下去刹那间就算出来结果是 50 × 101 = 5050. 这是上小学的高斯自己想出来的;稍加推广,就可以解决任何等差数列求和的问题。这是真正的天才杰作,成就了神童之誉。高斯在数学领域里终身建树颇丰,有数学王子 (Prince of Mathematics)之称。

高斯的工作涉猎数学的多个分支。除了数学外,他亦探入或与人合作探索天文和物理领域。在他的早期成长中,对于神学和语言学亦显出不同反响的理解才能。

高斯的最主要成就和他受的教育

少年天才的高斯接受了正规严谨的教育,曾在卡罗琳那学院和世界知名的哥廷堡大学共学习六年(1792 – 1795, 1795 – 1798)。1796 年高斯19岁时他就发现了用直尺和圆规作正十七边形的方法:继承了来自古希腊的数学传统–只要可能的话,就只用直尺和圆规完全准确地作出任何几何图形。

1799年(22岁),高斯的博士论文改进了现在称为代数基本定理的证明。该定理说:复系数多项式至少有一个复根;通过因子分解的过程,这表明 n多项式在复数域有n个根。在严谨性上,高斯的证明比前证明进了一大步。

高斯用直尺和圆规作正十七边形的方法,是建立在传统上的,用到了代数,还联系了可作图性与费尔马数。这成为他最得意之作;今天学习纯粹数学的人仍把它当作代数和几何结合的典范。分圆多项式理论就是在这工作中萌芽的,后得到进一步发展 (不仅是他本人的工作)。在博士论文中的证明,他自己还不满意:用了一生时间来改进代数基本定理的证明(见下文)。

非这两个工作莫属高斯一生的代表作。

其他工作

21岁时(1798年)他完成了算术教程(这里,算术主要指现在称为‘数论’的内容 – 数论是数学中即基础又高难的一分支)。由此奠定他在数论上的地位。数论中最常用到的模同余的记号,也是由于高斯的提倡而成为标准。例如,16 除以7,余数是2,在模同余理论中,写成 16 ≡ 2 (模7)。记号≡读作同余;这大大简化了表达,体现了大家风范。

高斯还结合圆锥曲线和高次方程组(高至8次)开创了(理论)天文学的工作。其中用到了一些复杂方法如付利叶变换和三角插值。1801年(24岁),他的理论预报当年即得到天文观测的证实。此后,高斯与物理学教授Wilhelm Weber长期合作,富有成果。他建立了磁观察站和磁俱乐部,是电磁学理论的先驱之一。他的工作也涉及到光学领域。他还主持了当地大地测量(1818 年,在汉诺威王国,现为德国的一部分)。正态分布,又称误差分布,高斯分布,在实验和统计数据处理上有重要意义。高斯在其中的工作从“高斯分布”的名称上就可以看到。

我们难以尽数高斯的成就。那个 1+2+3+ … + 100 的故事,由此衍生了高斯序列(或者三角形数:如1,1+2=3,1+2+3=6,1+2+3+4=10,…; 1,3,6,10 就是三角形数);而高斯的一个发现,是任何自然数可以写成不超过三个三角形数的和 — 来自他笔记 (”ΕΥΡΗΚΑ! num = Δ + Δ + Δ”)。喜悦之情溢于言表 — 我们看到王子在数学世界的快乐!这是1796 年,他发现正十七边形尺规作图法的同一年。这是年轻时随手的作品,是大师的小品。

他用一生的时间改进他的工作,推敲每个细节。在1849年(距首次发表已有50年之久;当时他已经72岁高龄)高斯给出了关于代数基本定理的一个证明,按近代标准完全严谨。天才也如此磨砺自己的工作,让人感佩!晚年高斯成为荷兰皇家协会会员及荷兰艺术科学学院院士(外籍)。他不为名所累,提携后人,欣赏同行,对新秀黎曼在曲面几何上工作由衷称赞。

高斯的启示

每个人都能够从高斯的故事和贡献中得到一些启示。少年神童很多,但是成就堪比高斯的寥寥。高斯治学毫不浮躁,终其一生改进早期已作出的成果,仅此就让今天的浮躁者汗颜。高斯既无愧于少年神童,而他的学术成就和地位却来自于追求进取和不断磨砺。为后世治学树立了榜样。